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Abstract—Power limits on future high-performance comput-
ing (HPC) systems will constrain applications. However, HPC
applications do not consume constant power over their lifetimes.
Thus, applications assigned a fixed power bound may be forced
to slow down during high-power computation phases, but may
not consume their full power allocation during low-power I/O
phases. This paper explores algorithms that leverage application
semantics—phase frequency, duration and power needs—to shift
unused power from applications in I/O phases to applications in
computation phases, thus improving system-wide performance.
We design novel techniques that include explicit staggering of
applications to improve power shifting. Compared to executing
without power shifting, our algorithms can improve average
performance by up to 8% or improve performance of a single,
high-priority application by up to 32%.

I. INTRODUCTION

Power is a significant concern for upcoming exascale sys-
tems [1]. Today’s fastest systems only have tens of petaflops
of capability while using about 10MW. Without significant
software and hardware changes, we will not meet exascale
power budgets. Because of these future power constraints,
applications will soon execute with strict power limits and
will rely on advances in system software to meet them.

Many researchers have explored single application perfor-
mance under a power budget. One solution provides each
application an amount of power based on the number of nodes
that it uses and only shifts power within those nodes [2].
However, we can significantly improve system performance
by shifting power across concurrently running applications.
Figure 1 shows that ParaDiS uses more than 80W of power
during computation, but when it enters an I/O phase at around
90 seconds, power use drops to around 20W. This pattern is
typical of applications with periodic I/O phases [3], [4]. If
the per-socket power limit is between 25W and 80W, ParaDiS
will have to slow down during computation phases to meet the
power limit, but it will have excess power during I/O phases.
We can dynamically shift this excess power to applications
that are executing computation phases to improve system-wide
performance without affecting the “donor” application.

In this paper, we develop and analyze algorithms that lever-
age application semantics to shift power during I/O phases.
The semantics capture key characteristics of computation and
I/O phases, including their start times, frequencies, durations,
and power needs. We implement our algorithms in a simulator,
called PowerShifter, to study scenarios that vary job size
distribution, number of jobs, application power consumption,
cluster power limit, and I/O phase frequency and duration.
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Fig. 1. ParaDiS computation (high) and I/O (low) power use

We investigate several power shifting strategies. Our base
strategy, which often performs well, simply shifts power
whenever an I/O phase occurs. We also design and implement
more sophisticated algorithms that potentially delay some
applications to achieve a schedule that limits the number of
applications that incur I/O concurrently. Thus, an application
in an I/O phase can more easily identify a target “partner”
application for power shifting. PowerShifter handles several
challenges, including job failures, job arrivals, and job comple-
tions, by changing the schedule on the fly, in response to these
unpredictable events. This paper makes several contributions:

• The first I/O-aware power shifting algorithms;
• A demonstration that a simple, on-demand algorithm

improves average performance, while complex algorithms
are effective for systems with few, large jobs;

• An implementation of our algorithms in PowerShifter
and a study of the impact of workload characteristics
including job power needs, job count, and job sizes;

• A validation of PowerShifter for three real applications:
Cactus, ParaDiS, and LAMMPS.

PowerShifter shows that our algorithms improve perfor-
mance of a single application up to 32% and average perfor-
mance up to 8% compared to executing without power shift-
ing. Moreover, scheduling I/O phases explicitly can improve
performance by 12% over straightforward algorithms. Many
of our experiments are driven by traces from real machines.

This paper is organized as follows. Section II details our
assumptions, Section III presents our novel algorithms, and
Section IV describes PowerShifter. Section V discusses our
implementation on a real cluster and its use in validating Pow-
erShifter, and Section VI presents our experimental results.
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II. ASSUMPTIONS

We assume a high-performance computing (HPC) system
with N nodes and a global power bound P. Each application
can use a different node count; the sum of the node counts
is less than or equal to N . In the default case (i.e., no power
shifting), we assume a uniform power bound of P/N per node.

We assume that applications alternate between computation
phases and I/O phases. I/O phases generally record check-
points or visualization data. Checkpoints save application state
periodically to enable a restart if a failure occurs. Visualization
data similarly represents periodic system state. Thus, both
types of I/O generally occur periodically. We group them in the
same category as I/O phases, which generally use little power
because techniques such as DMA allow the CPU to idle. The
power needs of a computation phase depend on the mix of
CPU operations, cache hits, and main memory accesses, so
different applications (phases) react differently to additional
power. We assume that computation phases consume more
power than I/O phases in most cases.

We define the following parameters: each computation (or
I/O) phase lasts d time units, consumes p power, and starts
every f time units (see Figure 2). In most cases, the value
of d for computation phases is chosen as a multiple of the
length of a program-level timestep. In general, an application
may have multiple types of computation or I/O phases, such
as checkpointing and visualization output. For simplicity, we
assume each application has one type of each phase. We
initially assume that I/O phase duration is independent of the
degree of I/O concurrency (relaxed in Section VI-D).

We assume that PowerShifter has access to the parameters
described above (d, f , and p) for each application. Thus, it
can determine when I/O and computation will occur. Phase
timing is often available in explicit user configurations or
most checkpoint or visualization data libraries. We can obtain
power information by profiling [5] or program analysis. Most
of our algorithms (see Section III) need less information—
just the power needs of the current phase. For simplicity, we
only consider CPU power. We could potentially shift power
between other components to achieve additional benefit. We
also ignore any extra available power due to idle nodes.

We allow the set of executing applications to change over
time due to job arrivals and completions. Users typically
submit jobs by specifying a node count and an estimated
run time. The resource manager maintains requests in a job
queue and allocates nodes to them, using space sharing [6].
We assume that the scheduler uses a first-come, first-served
(FCFS) approach, but our I/O-aware power shifting algorithms
are easily extended to handle backfilling-based algorithms.

Algorithm 1 Spread algorithm
1: function ENTER IO
2: decrease my.allocatedPower by my.freePower
3: my.apps = apps in compute phase that can use power
4: my.donationAmount = my.freePower/sizeof(my.apps)
5: for i in my.apps do
6: increase i.allocatedPower by my.donationAmount
7: function EXIT IO
8: for i in my.apps do
9: decrease i.allocatedPower by my.donationAmount

10: increase my.allocatedPower by my.freePower

III. ALGORITHMS

We present two types of algorithms. Spread and Priority
are shifting algorithms, which are concerned with dynamically
shifting power between applications. By contrast, Stagger and
Control are scheduling algorithms in that they attempt to
reduce the overlap of I/O phases across applications, thus
increasing the opportunity for power shifting. Each shifting
algorithm can either run on its own, or it can be combined
with either of the scheduling algorithms. Each algorithm
is described in greater detail below. We use the variable
my.freePower to denote the difference between an application’s
allocated power and its consumed power in the I/O phase.

A. Spread

Algorithm 1 outlines Spread, our baseline power shifting
algorithm for improving the performance of as many appli-
cations as possible. Spread only uses the knowledge that an
application is in an I/O phase; it ignores the phase’s frequency
and duration. At the start of an I/O phase, Spread allocates
excess power evenly among all applications in computation
phases that are not running at full power. The donated power
is then reclaimed at the end of the I/O phase.

B. Priority

Priority is similar to Spread except that it assumes ap-
plications are ordered by their relative importance by some
mechanism, and it attempts to finish high priority applications
as quickly as possible. At the start of an I/O phase, an
application donates its unused power to the highest priority
application that is not yet running at full power. A single
application may donate power to multiple applications if the
highest priority application is running at or near full power.

C. Stagger

Spread and Priority often perform well (see Section VI).
However, if too many applications enter their I/O phases
concurrently, the unused power may exceed the power needs
of the remaining applications, so some power may be wasted,
as the leftmost pane of Figure 3 shows. However, since
PowerShifter knows the I/O frequency and duration of each
application, we can schedule I/O phases intelligently to reduce
the number of applications in I/O phases at any one time.
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Algorithm 2 Stagger algorithm
1: function APPLICATION ENTER(AppType a)
2: my.g = findExistingGroup(a)
3: if my.g != NULL then
4: delay a
5: else
6: my.g = newGroup()
7: my.g.add(a)
8: function APPLICATION EXIT(AppType a)
9: my.g.remove(a)

10: if my.g.size < Threshold then . my.g is too small
11: my.g.delete()
12: for i in my.g do . Add remaining apps to groups
13: Application Enter(i)

Stagger, which Algorithm 2 describes, groups applications
and then staggers the I/O phases within each group. When
application a starts, Stagger adds a to an existing group, or
if no suitable group is found, it creates a new group. It then
delays a such that a’s first I/O phase will not overlap with
the next I/O phase of any other application in a’s group. This
mechanism prevents overlap with the next I/O phase, although
future I/O phases might overlap. The calculation of I/O phase
timing may be imperfect because it does not consider the effect
of power limits or power shifting. The middle pane of Figure 3
shows how Stagger reduces I/O phase overlap.

While delaying applications could increase run time, these
delays are amortized over an application’s (usually many)
timesteps. Applications are only delayed when they first join
a group, which happens either when the application arrives or
when the application’s current group is disbanded because it
became too small. Thus, the improvement from better power
utilization usually outweighs the cost of the delays. Also,
Stagger limits the delay that it assigns to an application to
a small percentage of its expected run time.

Stagger is our only algorithm that explicitly handles appli-
cation failures, since it may need to redo group assignments. It
treats a failure as a job completion and a restart as a job arrival
by calling Application Exit or Application Enter, respectively.

D. Control

Control (see Algorithm 3) assumes that the runtime system
can control I/O phase timing, which could, for example, occur

Algorithm 3 Control algorithm. ShiftingAlg refers to the
shifting algorithm in use.

1: function ENTER IO
2: for i in allApps except me do
3: if i.phase == Computation then
4: powerNeed += i.powerNeed-i.allocPower
5: cond1 = my.freePower <= powerNeed
6: cond2 = (curTime - my.lastIOSched) > (k × d)
7: if cond1 or cond2 then
8: my.phase = IO
9: ShiftingAlg.Enter IO()

10: function EXIT IO
11: my.phase = Computation
12: my.lastIOSched += f
13: ShiftingAlg.Exit IO()

in a checkpointing library. Thus, Control can minimize overlap
of I/O phases across applications without incurring delays.
While many current HPC applications do not conform to our
assumption, we include Control because its approach may
become more important in the future. Exascale systems may
need to defer I/O phases to avoid excessive overhead, and
I/O phase libraries will need awareness of current system
conditions such as potential imminent failures to determine
when I/O phases are necessary. Thus, system control of I/O
phases, especially checkpoints, may become common.

The right pane of Figure 3 shows the basic operation of
Control, which allows an application to enter an I/O phase
only if it will not waste power. Otherwise, the application
continues computing and attempts to enter an I/O phase later,
such as at the end of its next timestep.

Control allows an application’s I/O phase to proceed, re-
gardless of power needs of other applications, if it has been
delayed by more than k × d, where d is the interval between
I/O phases and k is a constant (0.5 in our experiments). In
addition, when Control delays an I/O phase, it also reduces the
length of the following computation phase so that the next I/O
phase is not affected. These mechanisms prevent the situation
in which an I/O phase is delayed sufficiently long to impact
reliability or post-mortem visualization negatively.



IV. SIMULATOR

We developed PowerShifter, a simulator that explores the
effects of shifting power across applications. Simulation allows
us to execute experiments quickly and to investigate situa-
tions that current hardware or applications do not support.
PowerShifter simulates applications executing on a power-
constrained HPC system. Its input includes a set of appli-
cations, their computational and I/O phase parameters, and
which shifting and scheduling algorithms to use. It outputs
the run time of each application, including the cost of any
delays incurred by the power shifting algorithm.

PowerShifter divides time into discrete steps. It starts appli-
cations at the beginning of each timestep if nodes are available.
It then enforces delays that arise from Stagger, calculates
power needs of each application based on its current phase,
and re-allocates any unused power based on the power shifting
algorithm. It then advances one timestep, which involves
calculating the amount of work each application performs,
which depends on the application’s current power allocation
and its maximum possible power usage in its current phase.

At the end of a timestep, PowerShifter updates application
phases (e.g., ending an I/O phase) and injects exponentially
distributed failures. When a failure occurs, the application’s
progress is reset to its last checkpoint, a restart penalty
is assessed, and then the application continues. This cycle
continues until all applications complete.

Since PowerShifter discretizes time, all significant events
(such as phase changes) occur at the boundaries of timesteps.
In some cases, such as the start and end of I/O phases, we
reduce this error, but some error inevitably arises from the
size of the timesteps. However, as we show in Section V-B,
our simulations closely match a real implementation.

V. IMPLEMENTATION AND VALIDATION

We implemented our techniques in a prototype that dynam-
ically reallocates power between executing applications. We
use it to validate PowerShifter based on real system results.

A. Implementation

Our prototype consists of three parts: a wrapper, a runtime,
and a controller. The wrapper uses the MPI profiling interface
to report start and end times of both computation and I/O.
This component is linked into all applications.

The runtime runs in the background on each node, com-
municates with the wrapper and controller, and implements
node-level power caps using RAPL (Running Average Power
Limit) [7]. It can pause and resume the application using
the signals SIGSTOP and SIGCONT, and it accesses MSRs
(Model Specific Registers) via libmsr [8] and librapl to set
power limits and to record power usage and CPU activity.
While we use RAPL, our prototype could be adapted to any
cluster that supports power capping.

Our prototype’s final component is the controller. One
copy of the controller runs during each experiment, and it
communicates with the runtime on each node. It makes power
allocation and application pause/continue decisions based on

node-level information on application state and power needs,
and then implements these decisions via the runtimes on each
node. The controller is configurable to simplify development
and use of new power shifting algorithms. It is also application
aware—it groups nodes by applications—so power shifting
algorithms can make decisions at the node or application level.

Our prototype runs on Cab, which is a cluster of 1,296
Intel Xeons that uses SLURM [9] for resource management.
It uses a job submission script that requests a node allocation
large enough for all application jobs with one extra node for
the controller. The script uses SLURM to start the controller
on one node and the runtime on all other nodes. It then uses
SLURM to start jobs on disjoint subsets of nodes. The script
exits when all jobs, including the controller, have completed.

The controller and runtimes start first, and each runtime
registers with the controller. Eventually, an application starts
and calls MPI_Init on each of its nodes. The wrapper
intercepts this call, calls PMPI_Init, and sends a signal
to the runtime to indicate that the application has started.
Control is then returned to the application. The runtime sends
a signal to the controller to indicate that the application
has started on that node. It also includes information about
the application, including the application’s power needs. The
controller responds with an initial power limit, which the
runtime implements using MSRs.

The wrapper monitors the application for transitions be-
tween computation and I/O phases. Our prototype requires a
user-inserted MPI_Pcontrol call to mark each transition
between phases; a production implementation could observe
the transition less intrusively. The wrapper forwards this
information to the runtime, which sends it to the controller.
Depending on the power shifting algorithm, the controller can
lower the power limit on that node and raise the power limits
on other nodes. The controller can also pause or resume the
application at any time, as required by Stagger.

Communication between the controller and runtimes has
negligible overhead because messaging occurs in the back-
ground and thus does not directly affect application execution
time. RAPL latency is another source of overhead. Our ex-
periments exhibit approximately 50 ms lag between when the
runtime sets a power cap and when the processor begins to
execute at it, which is a 0.2% overhead in the worst case.

We use our prototype to validate PowerShifter. However,
we note that it improved application run times up to 26%.

B. Simulator Validation

To validate PowerShifter, we compare it to our prototype
using LAMMPS, ParaDiS, and Cactus. LAMMPS [10] is
a molecular dynamics simulation from the ASC Sequoia
benchmark suite. ParaDiS [11] is a production dislocation
dynamics simulation that operates on dynamically changing,
unbalanced data set sizes across MPI processes. We used the
“Copper” input. Cactus [12] is a framework that numerically
solves Einstein’s equations [13] via adaptive mesh refinement.
These applications are used for production science and use
periodic I/O phases.



Experiment Set of Applications Percentage Error

1
LAMMPS 0.2%
ParaDiS 1.7%
Cactus 0.4%

2 LAMMPS 0.1%
Cactus 0.4%

3

ParaDiS 0.5%
ParaDiS 0.9%
ParaDiS 0.7%
ParaDiS 1.2%

4

Cactus 0.1%
Cactus 0.3%
Cactus 0.8%
Cactus 0.2%

TABLE I
VALIDATION RUNS

We first executed each application at various power levels to
obtain simple models of their response to power limit changes.
PowerShifter uses these models to predict their run times
under our power shifting algorithms. We then ran various
tests using our prototype, and then re-ran the same tests in
PowerShifter. Table I presents the accuracy of PowerShifter’s
run time predictions relative to the median run time of at least
five actual runs.

All predictions have less than 2% error and most cases
have less than 1% error. Analysis indicates that PowerShifter’s
prediction of the increase in performance due to an increase
in allocated power is the most significant source of error. The
worst case (not shown in Table I) occurred in a test run with
LAMMPS, in which the error when increasing power from
60W to 80W was 3.3%.

VI. RESULTS

We present the results from our PowerShifter simulator for
both large and small numbers of applications.

A. Setup

We execute two broad groups of experiments. The first
group (which covers the experiments in Section VI-B) is based
on real data. Specifically, the node count and job arrival time
are taken from the RICC job trace from the Parallel Workloads
Archive [14]. The percentage of time a job spends in I/O is
either based on Darshan log files [15] obtained from actual
runs on Intrepid (an IBM Blue Gene/P ALCF machine), or it
is provided as an input parameter. The power limit for all tests
was 60W per node, unless otherwise stated. Other parameters,
which are not available in traces, are determined randomly;
how we choose these is detailed later in this subsection.

In the second group (which covers the experiments in
Section VI-C), all parameters are fixed and identical across all
applications. This group is intended to study specific scenarios
found on capability machines.

Unless otherwise stated, the random parameters for each
simulation are chosen as follows. We estimate the number
of application timesteps using the run time from the RICC
trace. We choose the timestep time from a uniform distribution
between 0.1 and 2 seconds (applications generally perform
several timesteps between I/O phases). We choose I/O phase
time from a uniform distribution between 30 seconds and 5
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Fig. 4. Average percentage improvement with 50 applications

minutes. We choose the power consumption during compu-
tation from a uniform distribution between 80W and 100W
per node, and we choose I/O phase power from a uniform
distribution between 35W and 45W per node.

We randomly select roughly 80% of applications to enter
I/O phases after a fixed number of program-level timesteps; the
remaining applications enter I/O phases after a fixed amount of
wall-clock time. These mechanisms mirror real applications,
which can specify the interval between I/O phases in either
timesteps or time. We calculate the interval between I/O phases
based on the timestep time, I/O phase time, and percentage of
time spent in I/O phases, which was a simulation input.

To emulate the response of applications to changes in
the power limit, we ran ParaDiS at several different power
levels. We use this data to produce a third degree polynomial
that estimates performance under a given power limit. We
then assign a random factor to each application to scale this
polynomial, and use the scaled polynomial to calculate that
application’s response to changes in the power limit. We
choose the factor such that the maximum improvement due
to increasing the power limit for a given application ranges
from 10% (representing a memory-bound program) to 250%
(representing a CPU-bound program). We use 250% based on
the range of frequencies on Cab when setting power bounds on
ParaDiS from 40W to 90W, which was 1.33GHz to 3.0GHz.

In addition to using the Intrepid log files mentioned previ-
ously, we run tests in which we vary the percentage of time
that applications spend in I/O from 10% to 50%. While 50%
is unusually large, we use it as our upper bound to study the
effect of increasing I/O phase time on our algorithms.

For Priority, we assign priorities in reverse order of CPU-
intensiveness; applications that are highly CPU-intensive get
the highest priority, which preferentially allocates power to
applications that can benefit the most from it. Doing this on a
real system would require knowledge of the CPU-intensiveness
of all running applications, which is an orthogonal problem for
which much related work exists [16], [17].

B. Large Numbers of Applications

Our first set of experiments models a capacity system with
many concurrent applications. These experiments simulate 50
applications running on a 512 node cluster.

1) Average Improvement: This section includes two sets of
experiments. In the first set (labeled “Intrepid” in Figure 4), we



take the percent of time that applications spend in I/O from a
Darshan log [15] recorded on Intrepid, which represents about
1/3 of its workload. The log does not contain any information
about text-based I/O, so I/O time is underrepresented for some
applications. Thus, we remove any application for which I/O
is less than 2% of its run time. We also remove any application
for which I/O is more than 90% of its run time, as we assume it
was an I/O benchmark or similar program. In the second set of
experiments, which Figure 4 also shows, we fix the percentage
of time spent in I/O for all applications, which allows us to
investigate the effect of the amount of time that applications
spend in I/O on the effectiveness of power shifting. In both sets
of experiments, we randomly inject failures with an MTTF of
41 minutes across the entire cluster.

We ran each experiment several times with different ran-
dom parameters. Figure 4 shows the average percentage
improvement obtained across all runs. The legend indi-
cates the algorithms used in the format SchedulingAlgo-
rithm+ShiftingAlgorithm. For simplicity, throughout this sec-
tion, if we refer to just a single algorithm, any comments apply
to all combinations of scheduling and shifting algorithms that
include that algorithm. For example, if we make comments
about “Spread”, they apply to None+Spread, Stagger+Spread,
and Control+Spread.

Performance can improve because an application executes
computation faster due to power shifting or because it executes
fewer I/O phases. The latter can occur if an application
measures the interval between I/O phases in time rather than
timesteps, so it may execute fewer I/O phases when it runs
faster. Also, the Control algorithm can push the final I/O phase
beyond when the application completes. To show these two
sources of improvement, we divide the improvement into the
portion due to faster computation (solid fill) and that due to
dropping I/O phases (hatched).

The results based on real I/O data show an improvement of
about 8%. The other experiments demonstrate that as appli-
cations spend more time in I/O phases, the benefit of power
shifting increases. Experiments that use Priority as the shifting
algorithm perform better than equivalent experiments that use
Spread, because more power is allocated to applications that
will benefit the most from it. However, Priority shifts power
unfairly, so assigning priorities based on CPU-intensiveness
may not be suitable for a production system. Surprisingly, runs
with no scheduling algorithm perform better than equivalent
runs with Stagger+Spread or Stagger+Priority. This effect
occurs because Stagger incurs delays to schedule I/O phases
even when the delays provide little benefit.

In all experiments, relatively little improvement comes from
dropped I/O phases, which is consistent with the majority
of applications taking their I/O phases after a fixed number
of timesteps. Control occasionally pushes an I/O phase past
the end of the run, which results in a larger benefit from
dropped I/O phases for Control+Spread and Control+Priority
than for the other algorithms. Besides this additional per-
formance benefit, Control provides little benefit over runs
with no scheduling algorithm unless applications spend a
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large percentage of time in I/O phases. With many running
applications, the probability that power is wasted due to a
large percentage of the applications executing I/O phases at
once is small. As the time spent in I/O phases increases,
this probability becomes larger, and so does the benefit of
Control+Spread and Control+Priority.

2) Maximum Improvement: Figure 5 shows the maximum
improvement over 50 applications with each algorithm. In
these experiments, we do not inject failures since they can
occur at different times relative to checkpoints in different
runs, which can result in a large performance improvement
that is unrelated to power shifting. We again run each test
several times with different random parameters. We calculate
the maximum improvement achieved by any application in
each run; the data that Figure 5 shows is the median of these
maximums. We again indicate the improvements due to faster
computation (solid fill) and reduced I/O phases (hatched).

As expected, runs with Priority achieve larger improvements
than equivalent runs with Spread, and some of its improve-
ments are in excess of 30%. In many cases, it achieves these
improvements without reducing the time spent in I/O phases,
as denoted by the lack of hatching on many of the bars. The
two Control runs at 50% I/O show the largest improvements,
but they were both for a short running application that took
two I/O phases in the baseline run, and Control shifted one of
them past the end of the run. Thus, the percent improvement
is large, but the absolute improvement is relatively small.

3) Improvement Under Different Power Limits: The re-
lationship between an application’s computation power, I/O
phase power, and system-imposed power limit can impact the
effectiveness of power shifting. To explore this dimension, we
execute several tests that vary the global power limit such that
the power allocated to each node ranges from the minimum
to the maximum amounts. In these experiments, we use 40W
and 80W for the I/O and computation power per node for all
applications. As in Section VI-B2, we do not inject failures to
ensure that all improvement is due to power shifting.

Figure 6 shows results for I/O phases that take 10%, 30%,
and 50% of total execution time. The x-axis is the global power
limit divided by the number of nodes, i.e., the power limit per
node in the absence of power shifting. For clarity, we only
show None+Spread and Control+Spread. The title states the
percentage of time in I/O phases at 60W.
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Fig. 6. Average percentage improvement under different power limits with I/O phases consuming 10% (left), 30% (middle), and 50% (right) of the time

At the lowest power limit (40W per node), power shifting
cannot provide any benefit because applications never have
unused power. Similarly, when the power per node is 80W,
all applications always have enough power, so power shifting
is unnecessary. Control+Spread can provide some benefit at
40W or 80W if it shifts I/O phases past the end of the run,
but power shifting provides no benefit.

The leftmost graph of Figure 6 has an inflection point at
60W per node. Below this power limit, half of the nodes
can be in I/O phases at the same time without leaving power
unused. Thus, None+Spread and Control+Spread have similar
performance. When the power limit is higher, less than half of
the nodes can be in an I/O phase at a time without some unused
power, so the benefit of Control+Spread increases. However,
Control+Spread has to delay more I/O phases to ensure that
power is not lost, so a large percentage of its improvement is
due to dropped I/O phases. The middle and rightmost graphs
show similar patterns, except that performance improvement
peaks at lower power limits.

C. Small Numbers of Applications

Our second set of experiments covers scenarios with small
numbers of concurrent applications, similar to those found
on capability machines. Reducing the number of applications
increases the probability that a scheduling algorithm will be
required to exploit I/O power shifting opportunities fully. Thus,
this section explores scenarios in which scheduling algorithms
make a significant difference.

In the next two subsections, all parameters are fixed and
identical across all applications. We set computation power
to 80W per node, I/O power to 40W per node, and the
power limit to 60W per node. These experiments are explicitly
designed to explore the limits of Stagger and Control when
I/O phases are aligned in specific patterns; thus, we do not
inject failures because they would disturb the alignment.

1) Perfect Alignment of I/O Phases: In these tests, several
applications with identical attributes (I/O phase time, compu-
tation phase time, node count, and response to power limit
changes) start at the same time. Thus, all of their I/O phases
occur at the same time, which means that no power can be
shifted unless I/O phases are adjusted. This represents a near-
optimal situation for Stagger or Control.

Figure 7 shows the improvement over the baseline (no
power shifting) for different numbers of applications. We
omit runs using None+Spread and None+Priority because
they achieve no performance improvement; in this scenario,
the shifting algorithms provide no benefit unless they are
paired with a scheduling algorithm. Control generally per-
forms slightly better than Stagger; both shift I/O phases to
ensure that they do not overlap, but Control does so without
incurring the cost of delays. For both algorithms, the magni-
tude of the improvement increases as the percentage of time
spent in I/O phases increases: more time in I/O phases implies
more opportunity to shift power.

The benefit of Control over Stagger is more pronounced
with odd numbers of applications than with even numbers of
applications because of the non-linear relationship between
power and performance. With an even number of applications,
Control allows applications to enter I/O phases in 2 groups—
first, half of the applications execute their I/O phases, and
when they finish, the other half execute theirs. Thus, all appli-
cations are at their maximum power level for a short period.
With an odd number of applications, one of the applications
becomes an “odd application out” and must execute its I/O
phase separately from the other applications to avoid unused
power. Thus, with an odd number of applications, applications
are given less extra power for a longer time, which results in
better improvement than giving applications a large amount of
power for a short time.

When applications spend 50% of their time in I/O, schedul-
ing I/O phases becomes difficult, as the widely varying per-
formance at different numbers of applications shows. Because
applications spend roughly the same amount of time in I/O
phases as in computation phases, Stagger can align even
numbers well. For example, with four applications, the first
application is in an I/O phase at the same time as the third,
and the second application is in an I/O phase at the same time
as the fourth. Thus, half of the applications are in I/O phases at
any given time, so little power is unused. With an odd number
of applications, more than half of the applications are in I/O
phases at the same time, so some power cannot be used.

Control performs relatively poorly at 50% because of the
limit on how long it will delay an I/O phase. For even numbers
of applications, it allows half of the applications to enter I/O
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Fig. 7. Average percentage improvement with I/O phases aligned and consuming 10% (left), 30% (middle), and 50% (right) of the time.

phases and delays the I/O phases of the other half. However,
halfway through the I/O phase, the second set of applications
reaches the I/O phase delay limit, so they start their I/O
phases. Thus, all applications are in I/O phases for a significant
period, which leads to unused power. For odd numbers of
applications, a similar effect happens, but it is mitigated by
the different number of applications in the two groups, which
causes applications to speed up by different amounts and
naturally staggers their I/O phases.

2) Partial Alignment of I/O Phases: Figure 8 shows iden-
tical tests to Figure 7 except that application start times
are offset by half the length of an I/O phase. Thus (in the
absence of power shifting), the first half of the I/O phase of
application i overlaps with the second half of the I/O phase of
application i − 1. In this more realistic situation, Spread and
Priority have some opportunity to shift power, even without
a scheduling algorithm. Stagger and Control exhibit roughly
similar behavior to that in Figure 7 except that Control can
achieve larger improvements when applications spend a large
percentage of time in I/O phases. With partially aligned I/O
phases, the amount of delay required to stagger I/O phases
is significantly less, so Control is still effective even when
applications are in I/O phases 50% of the time.

None+Spread and None+Priority can achieve little im-
provement with two applications because when both are in
I/O phases, no other applications are available to use the extra
power. As the number of applications increases, this situation
is mitigated; when there are six applications, None+Spread
and None+Priority achieve large speedups. As the number of
applications and the time that they spend in I/O increases,
we also see that None+Spread begins to perform better than
Stagger+Spread. As noted previously, Stagger will always
impose delays, even when they provide no benefit.

In the rightmost graphs of Figures 7 and 8, several algo-
rithms improve performance more than 12%. In these cases,
applications spend half of their time in I/O phases, and half
of the applications are in I/O phases at any given time, which
is the best case for power shifting. Applications spend half of
their time in computation and benefit from power shifted from
other applications during the entire computation phase. They
then spend the other half of their time in I/O phases, providing
power that can be shifted to other applications.

D. I/O Contention
Our results are encouraging. One key assumption that we

make is that I/O time is constant: that is, writing a given
amount of data to the file system always takes the same
amount of time. This assumption may not hold in practice.
In particular, I/O operations may incur slowdown when the
number of nodes concurrently performing I/O increases. We
now consider potential implications of this fact on our results.

For Spread, Priority, and Stagger, the number of nodes
in I/O phases at any given time is essentially random: jobs
start at random times, enter I/O phases at random intervals,
and remain in I/O phases for random lengths of time. Thus,
effects of increased I/O overlap are generally counteracted by
periods of decreased I/O overlap. However, power shifting
compresses computation time but not I/O time, so the overall
percentage of time that jobs spend in I/O will increase, which
increases the probability of I/O phases overlapping. Consider
the situation in which jobs spend 10% of their time in I/O
phases, which, according to Figure 4, results in a roughly 2%
performance improvement. If we assume the increase in I/O
overlap is proportional to the performance improvement from
power shifting, I/O phases should overlap about 2% more
during the run. Since I/O phases take up 10% of execution
time, this increased overlap takes up about 0.2% of total run
time, which is negligible. Also, I/O system contention may
occur without power shifting, so PowerShifter is unlikely to
initiate contention for large systems.

If applications spend significant time in I/O (e.g., 50%),
the speedup is larger (8% on average in Figure 4). In this
extreme case, I/O phases will overlap roughly 4% more due
to power shifting, which may noticeably decrease the speedups
achieved by power shifting. However, this extreme of high I/O
time for all applications is unlikely. We expect an inflection
point after which the benefit of power shifting decreases; any
slowdown due to overlapped I/O phases simply moves this
inflection point to the left.

Control actively manages when I/O phases occur, so the
impact of I/O overlap is different. Control is essentially a
“peak shaving” algorithm: when a “peak” of many nodes in
I/O phases exists, it “shaves off” this peak into the following
valley. This results in fewer overlapped I/O phases for jobs
that were part of the peak, at the cost of possibly increasing
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Fig. 8. Average percentage improvement with I/O phases partially aligned and consuming 10% (left), 30% (middle), and 50% (right) of the time.

the I/O overlap for jobs in the valley. Thus, the normal case
for Control is to reduce I/O overlap for a large number of jobs
while potentially increasing I/O overlap for a smaller number
of jobs. Therefore, we expect that I/O overlap will have little
negative effect—and possibly a positive one—on Control.

VII. RELATED WORK

Many systems and techniques move power within a single
application. They generally exploit load imbalance to shift
power from nodes off of the critical path to those on it.
Marathe et al. [2] move power by resetting power caps based
on Intel’s Running Average Power Limit (RAPL) [18]. Other
work saves energy on off-critical path nodes rather than
shifting power [19], [20], [21]. PowerShifter differs from these
systems in that it shifts power across applications.

Some recent work explores shifting power between different
applications. Ellsworth et al. [22] developed a system called
POWsched that collects excess power from nodes executing
below their power caps and reallocates it to nodes executing
near their power caps. POWsched does not require any se-
mantic information, and it considers nodes individually rather
than grouping them by application. Another system by Liu
et al. [23] uses hardware counters to classify phases as CPU,
I/O, or “undetermined” and then shifts power from inferred I/O
phases to inferred CPU phases. These systems are simpler than
PowerShifter because they do not require semantic information
about applications. However, they are vulnerable to issues
such as quickly changing power consumption leading to hys-
teresis, and they cannot schedule applications to increase the
opportunity for power shifting. In addition, POWsched may
briefly allocate uneven amounts of power to different nodes
within an application, thus creating computational imbalance.
PowerShifter avoids these problems by requiring semantic
information about applications.

Several researchers have studied HPC application execution
under power bounds. This includes overprovisioning [24], [25]
as well as work in scheduling [26], [27], [28], [29]. This
work is complimentary to our own; our algorithms could be
integrated into these systems to provide additional benefit.

Our work is mostly orthogonal to the checkpointing ap-
proach, as long as we can determine the checkpoint inter-
val and duration. We could integrate our techniques into

checkpoint libraries such as BLCR [30] or SCR (The Scal-
able Checkpoint/Restart Library) [31]. The growing scale of
systems creates challenges for checkpointing, which have
given rise to approaches like burst buffers [32], [33] and
asynchronous transfers of checkpoints [34]. These techniques
will impact the power draw and cause more frequent [31]
and more complicated power shifts from different components
(e.g., the CPU, the memory system and the I/O system).
These developments will likely require extensions to our I/O-
aware power shifting techniques, but the key idea behind
our approach—integrating knowledge of the checkpointing
process into power shifting decisions—will remain critical.

VIII. SUMMARY

Power use is a major challenge for near-future exascale
systems. System software must be redesigned in order to
achieve the high performance required for scientific discov-
ery while respecting system power limits. In this paper, we
explored an opportunity for significant performance improve-
ment by shifting power from applications that are executing
I/O phases to those executing computation phases. We de-
signed and implemented two algorithms for shifting power
and two algorithms for scheduling I/O phases and evaluated
them in a simulator, which we validated on a real system. We
showed that staggering applications to avoid I/O phase overlap
and externally controlling I/O phases can provide significant
benefit. Results from PowerShifter show that our algorithms
achieve significant performance improvement over static, per-
node power caps.

Our algorithms and results could impact future system
software that must optimize performance under a power
constraint. For example, job schedulers can implement our
algorithms, or variations of them, based on system usage
characteristics. Contrary to naive expectations, we found that
straightforward algorithms performed well with a large number
of concurrent jobs as found on capacity systems. This finding
will benefit schedulers for capacity systems that may already
be overloaded with the overhead of managing a large number
of jobs, since the simpler algorithms are less computationally
expensive. On the other hand, capability systems may justify
the use of more complex and expensive algorithms.
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[3] M. Diouri, O. Gluck, L. Lefèvre, and F. Cappello, “Energy Consider-
ations in Checkpointing and Fault Tolerance Protocols,” in IEEE/IFIP
42nd International Conference on Dependable Systems and Networks
Workshops (DSN-W), 2012, pp. 1–6.

[4] E. Meneses, O. Sarood, and L. V. Kale, “Assessing Energy Efficiency
of Fault Tolerance Protocols for HPC Systems,” in Computer Architec-
ture and High Performance Computing (SBAC-PAD), 2012 IEEE 24th
International Symposium on. IEEE, 2012, pp. 35–42.

[5] K. W. Cameron, R. Ge, and X. Feng, “ High-Performance, Power-Aware
Distributed Computing for Scientific Applications,” IEEE Computer,
vol. 38, no. 11, 2005.

[6] D. Feitelson, L. Rudolph, U. Schwiegelshohn, K. Sevcik, and P. Wong,
“Theory and Practice in Parallel Job Scheduling,” Job Scheduling
Strategies for Parallel Processing, pp. 1–34, 1997.

[7] Intel, “Intel 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B. System Programming Guide, Part 2.” http://www.intel.
com/content/dam/www/public/us/en/documents/manuals/64-ia-32-
architectures-software-developer-vol-3b-part-2-manual.pdf.

[8] K. Shoga and B. Rountree, “libmsr,” https://github.com/scalability-llnl/
libmsr.

[9] A. Yoo, M. Jette, and M. Grondona, “SLURM: Simple Linux Utility
for Resource Management,” in Job Scheduling Strategies for Parallel
Processing, ser. Lecture Notes in Computer Science. Springer-Verlag,
2003, vol. 2862, pp. 44–60.

[10] “ASC sequoia benchmark codes,” http://asc.llnl.gov/sequoia/
benchmarks/, 2009.

[11] V. Bulatov, W. Cai, M. Hiratani, G. Hommes, T. Pierce, M. Tang,
M. Rhee, K. Yates, and T. Arsenlis, “Scalable Line Dynamics in
ParaDiS,” in Supercomputing, Nov. 2004.

[12] G. Allen, W. Benger, T. Dramlitsch, T. Goodale, H. C. Hege, G. Lan-
fermann, A. Merzky, T. Radke, E. Seidel, and J. Shalf, “Cactus Tools
for Grid Applications,” Cluster Computing, vol. 4, no. 3, pp. 179–188,
2001.

[13] E. Seidel and W. Suen, “Numerical Relativity as a Tool for Computa-
tional Astrophysics,” Journal of Computational and Applied Mathemat-
ics, vol. 109, no. 1-2, pp. 493–525, 1999.

[14] M. Kurokawa, “Parallel Workload Archives,” http://www.cs.huji.ac.il/
labs/parallel/workload/l ricc.

[15] H. Luu, M. Winslett, W. Gropp, R. Ross, P. Carns, K. Harms,
M. Prabhat, S. Byna, and Y. Yao, “A Multiplatform Study of I/O
Behavior on Petascale Supercomputers,” in Proceedings of the 24th
International Symposium on High-Performance Parallel and Distributed
Computing, ser. HPDC ’15. New York, NY, USA: ACM, 2015, pp. 33–
44. [Online]. Available: http://doi.acm.org/10.1145/2749246.2749269

[16] C.-H. Hsu and W.-C. Feng, “Effective Dynamic Voltage Scaling
Through CPU-Boundedness Detection,” in Proceedings of the 4th
International Conference on Power-Aware Computer Systems. Berlin,
Heidelberg: Springer-Verlag, 2005, pp. 135–149. [Online]. Available:
http://dx.doi.org/10.1007/11574859 10

[17] V. W. Freeh, F. Pan, N. Kappiah, D. Lowenthal, and R. Springer,
“Exploring the Energy-Time Tradeoff in MPI Programs on a Power-
Scalable Cluster,” in Parallel and Distributed Processing Symposium,
2005. Proceedings. 19th IEEE International, April 2005.

[18] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and C. Le, “RAPL:
Memory Power Estimation and Capping,” in Proceedings of the 16th
ACM/IEEE International Symposium on Low Power Electronics and
Design, ser. ISLPED ’10, 2010, pp. 189–194.

[19] R. Ge, X. Feng, W. Feng, and K. W. Cameron, “ CPU MISER: A
Performance-Directed, Run-Time System for Power-Aware Clusters ,”
in International Conference on Parallel Processing, 2007.

[20] N. Kappiah, V. W. Freeh, and D. K. Lowenthal, “Just In Time Dynamic
Voltage Scaling: Exploiting Inter-Node Slack to Save Energy in MPI
Programs,” Journal of Parallel and Distributed Computing, vol. 68, pp.
1175–1185, 2008.

[21] B. Rountree, D. Lowenthal, B. de Supinski, M. Schulz, V. Freeh,
and T. Bletch, “Adagio: Making DVS Practical for Complex HPC
Applications,” in International Conf. on Supercomputing, Jun. 2009.

[22] D. A. Ellsworth, A. D. Malony, B. Rountree, and M. Schulz,
“Dynamic power sharing for higher job throughput,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’15. ACM, 2015, pp. 80:1–80:11.
[Online]. Available: http://doi.acm.org/10.1145/2807591.2807643

[23] Z. Liu, J. Lofstead, T. Wang, and W. Yu, “A Case of System-Wide Power
Management for Scientific Applications,” in International Conference on
Cluster Computing, Sept 2013.

[24] T. Patki, D. K. Lowenthal, B. Rountree, M. Schulz, and B. de Supinski,
“Exploring Hardware Overprovisioning in Power-Constrained, High Per-
formance Computing,” in International Conference on Supercomputing,
Jun. 2013.

[25] O. Sarood, A. Langer, L. V. Kale, B. Rountree, and B. R. de Supinski,
“Optimizing Power Allocation to CPU and Memory Subsystems in
Overprovisioned HPC Systems,” in IEEE International Conference on
Cluster Computing, Sept 2013, pp. 1–8.

[26] T. Patki, A. Sasidharan, M. Melarth, D. K. Lowenthal, B. Roun-
tree, M. Schulz, and B. de Supinski, “Practical Resource Manage-
ment in Power-Constrained, High Performance Computing,” in High-
Performance Distributed Computing, Jun. 2015.

[27] O. Sarood, A. Langer, A. Gupta, and L. V. Kale, “Maximizing Through-
put of Overprovisioned HPC Data Centers Under a Strict Power Budget,”
in Supercomputing, Nov. 2014.

[28] M. Etinski, J. Corbalan, J. Labarta, and M. Valero, “Optimizing Job
Performance Under a Given Power Constraint in HPC Centers,” in Green
Computing Conference, 2010, pp. 257–267.

[29] ——, “Linear Programming Based Parallel Job Scheduling for Power
Constrained Systems,” in International Conference on High Performance
Computing and Simulation, 2011, pp. 72–80.

[30] P. H. Hargrove and J. C. Duell, “Berkeley Lab Checkpoint/Restart
(BLCR) for Linux Clusters,” Journal of Physics: Conference
Series, vol. 46, no. 1, p. 494, 2006. [Online]. Available: http:
//stacks.iop.org/1742-6596/46/i=1/a=067

[31] A. Moody, G. Bronevetsky, K. Mohror, and B. R. de Supinksi, “Design,
Modeling, and Evaluation of a Scalable Multi-level Checkpointing
System,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC’10,
LLNL-CONF-427742, November 2010.

[32] N. Liu, J. Cope, P. H. Carns, C. D. Carothers, R. B. Ross, G. Grider,
A. Crume, and C. Maltzahn, “On the Role of Burst Buffers in
Leadership-Class Storage Systems,” in Symposium on Mass Storage
Systems and Technologies, MSST 2012, April 2012.

[33] K. Sato, A. Moody, K. Mohror, T. Gamblin, B. R. de Supinski,
N. Maruyama, and S. Matsuoka, “A User-level Infiniband-based File
System and Checkpoint Strategy for Burst Buffers,” in Proceedings of
the 14th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGrid’14), May 2014.

[34] K. Sato, A. Moody, K. Mohror, T. Gamblin, B. R. de Supinksi,
N. Maruyama, and S. Matsuoka, “Design and Modeling of a Non-
blocking Checkpointing System,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, SC’12, LLNL-CONF-554431, November 2012.


